- 1. R x C contingency table
 - Test for homogeneity (Pearson chi-squared)
 - Test of independence (Pearson chi-squared)
 - Test for trend
- 2. Single 2 x 2 table
 - Different sampling schemes
 - i Cohort (row totals fixed)
 - ii Case-control (column totals fixed)
 - iii Cross-sectional (grand total fixed)
 - Different measures of association
 - i RD (Designs 1 & 3)
 - ii RR (Designs 1 & 3)
 - iii OR (Designs 1, 2 & 3)
 - Test of association
 - i Pearson chi-squared
 - ii McNemar's (paired binary outcomes)
 - iii Fisher exact (expected cell sizes are small)
 - Rater agreement
 - Kappa to measure agreement greater than chance
 - Test Ho: $\kappa = 0$ equivalent to Pearson χ^2 test of independence
 - Landis and Koch interpretation of κ
- 3. Series of 2 x 2 tables
 - Confounding, causality
 - Effect modification (interaction)
 - Mantel-Haenszel (combined) OR estimate
 - Mantel-Haenszel (adjusted) test for association (assume OR constant across strata, Ho: OR= 1)
 - Breslow-Day Test for Homogeneity (Interaction, Effect Modification)

- 4. Logistic Regression
 - use when outcome is binary, independent data
 - logistic model
 - $\log[\pi(X)/(1-\pi(X))] = logit(\pi(X)) = X\beta$
 - $X\beta = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$
 - bounds $\pi(X)$ between 0 and 1
 - log(p/(1-p)) is the "log odds"
 - $\pi(X) = \exp(X\beta)/(1 + \exp(X\beta))$ are "probabilities"
 - saturated model has as many parameters (# of β 's) equal to number of "cells" in $X_1 \times X_2 \times \ldots \times X_p$ table; such a model reproduces the observed cell probabilities exactly
 - additive vs multiplicative (interaction) models
 - odds ratio
 - $\log[\pi(X_1)/(1-\pi(X_1))] \log[\pi(X_2)/(1-\pi(X_2))] =$ $\log[\pi(X_1)(1-\pi(X_2))/\pi(X_2)(1-\pi(X_1))] = (X_1 - X_2)\beta =$ $\log \text{ odds ratio for covariates } X_1 \text{ vs } X_2$
 - for X_i coded 0/1, β_i is the (adjusted) log odds ratio, if no interactions
 - confounding
 - effect modification (interaction)
 - estimation/testing
 - maximum likelihood used for estimation
 - likelihood ratio and Wald tests used to test hypotheses
 - LR for nested models only
 - Estimation/testing for linear combinations of parameters

- covariates
 - binary (typically coded 0/1)
 - categorical
 - o replace with k-1 indicators (unordered categories)
 - replace with ordinal "score" (e.g. 1,2,3 ...) (ordered categories)
 - quantitative
 - o linear, quadratic ...
- other links
 - log link: $log(\pi(X)) = X\beta$
 - ο β interpreted as log relative risk
 - identity link: $\pi(X) = X\beta$
 - $\circ \beta$ interpreted as risk difference
- Prediction
 - $\pi(X)$ is predicted probability
 - Automated procedures (e.g. stepwise, best subsets) for model fitting
 - AIC for model comparison (esp. non-nested models)
 - evaluate using sensitivity, specificity, ROC curve
 - cutoff, "good" values depend on scientific objective

Key Stata Commands (interpret output)

binreg	lroc
сс	lsense
CS	mcc
estat class	mhodds
estimates store	predict
kap	stepwise
lfit, <i>estat gof</i>	tab
lincom	tabodds
logit, logistic	test